
Data 101: Data Engineering Note 1 – September 1, 2022

Relational Algebra and Intro to SQL
Lecturer: Lakshya Jain Scribe: Shreya Shankar

1 Introduction

We’ll cover three types of data systems in this course—dataframes, relational databases, and Spark. This
note will focus on the relational data model, common operations, and a small flavor of SQL—the language
used to interact with relational data systems.

2 The Relational Data Model

A relation is a set of tuples, each with a predefined set of attributes. Each attribute has a type, called a
domain, which must be atomic (e.g., string or integer). The order of the tuples in a relation does not matter,
since the relation is a set.

The schema of a relation is list of attribute names and their domains. For example, in the Stanford
Policing Project, the schema for the Stops relation is:

Stops (id Integer, race String, gender String,

age Integer, warning Boolean...)

We can also think of a relation as a table of data. Organizations typically have many relations.

3 Relational Algebra

The operations that help us transform relations are known as relational algebra. We’ll focus on set operations,
such as union and difference. Suppose we have relations R and S, where each relation is a set of tuples as
previously defined. To union the relations (R∪S), the relations must have the same schema, and the result
of the union will also have the same schema as the individual relations. Difference-ing the relations (R−S)
yields tuples in R that are not in S.

We can also perform unary operations, such as selection and projection. The selection operator
selects or returns all tuples that satisfy some condition. We use the notation σc(R) to represent the selection
of tuples in R that satisfy condition c. The projection operator returns columns specified for all tuples in
a relation. We use the notation πA1,A2,...,An(R) to represent values for columns A1, A2, . . . , An in R.

Example 3.1. Say we want to retain all records pertaining to citations (i.e., citations are true), and also
drop arrest, warning, and citation attributes. We express this as: πid,race,gender,age (σcitation=true (Stops)).

Another operation—the Cartesian product, or cross product—is a binary operation that associates
each tuple in the left relation with each tuple in the right operation. We represent the Cartesian product
between relations R and S as R × S. If the schema for R is R(A1, A2, . . . , An) and the schema for S is
S(B1, B2, . . . , Bm), then the resulting schema for R× S will be R× S(A1, A2, . . . , An, B1, B2, . . . , Bm).

We could also perform a renaming operation, where we simply change the schema of a relation. We
denote this as ρS(Ai1 → Bi1, . . . , Ain → Bin(R), where R is the input relation and S is the output relation.

Other operations can be expressed as derivations of the operations we’ve listed above. For example,
how might you derive the intersection operator from union and difference operators? Moreover, joins can be
expressed as a special case of Cartesian product and selection: the theta join is a Cartesian product followed
by a selection, i.e., R 1θ S = σθ(R×S). You can think of a theta join as performing the cross-product, and
then removing tuples that don’t satisfy θ.

1



4 Operations that Relational Algebra Doesn’t Support

What can relational algebra not do? One answer is transposing a matrix (a common linear algebra operation),
because the size and type of an output relation is unclear. Another example is one-hot encoding, or encoding
categorical (string) values as features—similarly, it is hard to determine the output shape or type-check
without looking at the data! The final example listed in the slides is pivoting tables, or reshaping the data
to present it more intuitively. Again, hard to determine the output shape without looking at the data.

5 Taste of SQL

Structured Query Language, or ”sequel,” is a high level data transformation language supported by relational
databases and other data systems like Spark. It is declarative rather than imperative, meaning:

• Describes what rather than how

• It’s query-centric rather than code-centric

SQL’s core functionality is restricted, compared to Python. Nevertheless, it is still quite powerful, as
we’ll see in this class.

5.1 Basic Form

The basic form of a SQL query looks like this:

SELECT attributes

FROM tables

WHERE condition about tuples in tables

Note something confusing when trying to map SQL syntax to relational algebra: the selection operator
is essentially the WHERE statement, and the projection operator is the SELECT statement.

A shortcut to selecting all the attributes in a relation is to issue SELECT *. For example, to select all
tuples and all attributes from the Stops table, we can run the following query:

SELECT *

FROM Stops

To query the gender and citation columns (i.e., project the two columns) and filter on citations (i.e.,
select tuples where citation=true):

SELECT gender, citation

FROM Stops

WHERE citation = True

We will cover more SQL syntax in the following lectures.

2


