
Data 101: Data Engineering Note 6 – October 6, 2022

Data Preparation
Lecturer: Lakshya Jain Scribe: Shreya Shankar

Adapted from Joe Hellerstein’s notebook on data preparation and wrangling in an earlier version of DATA 101.

1 Introduction

Data preparation is a very broad subject, covering everything from data models to statistical assessments
of data to string algorithms to scalable data processing. In some sense, most of Data Engineering—most
of data science!—boils down to Data Preparation. The lecture has actual examples of data unboxing and
transformations, but we’ll cover some of them here.

2 “Unboxing” Data

“Unboxing” is the act of looking at your data to get a high-level sense of what’s going on. Some things to
look out for:

• Header info/schema

• Metadata

• Comments

Take a look at some rows or records in your data. Most files will run into one of these categories: record
per line (e.g., csv), dictionaries/objects (e.g., JSON), natural language (prose), images, and more. Check out
the lecture for specific commands you can run to unbox the data, like head.

3 Structural Transformations

We can convert relations to matrices and vice versa. Many datasets are not immediately stored in relations,
so it’s useful to do these structural transformations. We can use the UNPIVOT operation to convert matrices
to relations—or the UI in Trifacta, as done in the lecture. Similarly, the PIVOT operation converts relations
to matrices.

Suppose we have a table with year and month columns, and we want to pivot it into year by month ma-
trix form. We have many rows that have the same (year, month) pair, which means our PIVOT needs to pack
many values into a single cell. To do this, Trifacta asks us to choose an aggregate function—a reasonable
choice might be AVERAGE(Inches of Precipitation). If you prefer, Trifacta (like Postgres) actually
has an aggregate function that will just store a nested list (array) of all the values in a single cell—this is the
LIST aggregate. We can do PIVOT/UNPIVOT in Trifacta, in Pandas, and in Spreadsheets.

Can we do PIVOT in Relational Algebra? No: think about how we declare column values in relational
algebra: we write an expression like πc1,c2(T). The subscripts of the operator are part of the syntax of your
relational expression—they do not change as the relation instance (the data in the database!) changes.

By contrast, for PIVOT the subscript of the π operator essentially needs to be “the set of distinct values
in the relation instance”, which absolutely changes as the relation instances changes. Similarly, UNPIVOT
returns data values (an output instance) that come from the input schema which isn’t allowed. “Pure”
SQL as we’ve learned it—an equivalent to the relational algebra—shouldn’t be able to express PIVOT or
UNPIVOT. However, given how useful this is, many SQL systems have (proprietary) extensions.

1

4 Type Induction and Coercion

To begin let’s review ”statistical” data types. This is a slight refinement from the terms in DS100:

• nominal / categorical: types that have no inherent ordering, used as names for categories

• ordinals: types that are used to encode order. Typically the integers

• cardinals: types that are used to express cardinality (”how many”). Typically the integers . Cardinals
are common as the output of statistics (frequencies).

• numerical / measures: types that capture a numerical value or measurement. Typically a real (floating
point) number.

4.1 Data types in the wild

We’ve seen that some systems like databases keep data types as metadata, and enforce strong typing in
storage when data is inserted or modified. Used carefully, databases will carry the data-type metadata
along with the data when they communicate with tools or other databases.

But it’s very, very common to work with data that has little or no metadata. In that case, we have to
interpret the data somehow. As a very first step, we need to guess (”induce”) types for the data.

4.2 Techniques for Type Induction

Suppose I give you a column of potentially dirty data. Suppose you have a set of types H. You need to write
an algorithm to choose a type. How does it choose?

• Hard rules: Try types from most- to least-specific. (e.g. boolean, int, float, string). Choose the first one
that matches all the values.

• Minimum Description Length (MDL): see below

• Machine learning / classification (not really discussed in this class)

4.3 MDL

MDL is used to find a good “default” type for a column. Each type has a different number of bits required
to store each value, so the goal is to find the type that minimizes the total number of bits stored for that
column.

Let’s say len(v) is the bit-length for encoding of a value v explicitly. Given a type T with |T | distinct
values, the bit-length of encoding a value in that type is log|T |. (E.g. there are 264 64-bit integers, and each
one is log(264) = 64 bits long.) Let’s say that indicator variable IT (v) = 1 if v ∈ T , and 0 otherwise.

For MDL, we choose the type that minimizes the description length for the set of data c in a column:

min
T∈H

∑
v∈c

(IT (v)log(|T |) + (1− IT (v))len(v))

Consider a column of values: {’Joe’, 2, 12, 4750}. Assume the default type is string, which costs us 8 bits
per character. We can encode this as 3 16-bit integers and ’Joe’: length is 3 ∗ 16 + 3 ∗ 8 = 72. Or we can
encode it all as strings: (3 + 1 + 2 + 4) ∗ 8 = 80. MDL would favor ”int16” over ”string” in this example.

Note that one can enhance MDL in various ways. One approach that’s interesting to consider is to
induce *compound* types: i.e. the string ”12/31/2021” could be *string* or *date* or a compound type like
int4 ’/’ int8 ’/’ int16. Another approach is to use compression techniques to get tighter measures for the
length of encoding—for both type-matches and for strings.

2

In practice, some systems will break if the chosen type doesn’t fit all the data in the column, in which
case they’ll choose a ”hard rules” approach. For systems that can handle a mix of types, something like
MDL is not unusual, though it may be more naive (e.g. pick the type that matched the largest number of
entries).

5 Numerical Transformations

There are various types of calculations to consider: scalar functions, aggregate functions, and window
functions, all of which we have previously learned in SQL.

5.1 Scalar Functions

Recall a scalar is a tensor of dimension 0, or a value in some field. A scalar function is a function on scalar
values. In relational algebra, they are subscripts of π, σ, and 1, like πa,f(b)(R). Scalar functions are typically
quick: they are computed individually on each record and run in parallel.

A custom form of scalar functions is a user-defined function. You use them as you would use built-in
functions. In Postgres:

CREATE LANGUAGE plpythonu;

CREATE OR REPLACE FUNCTION pyhash(s text)
RETURNS text

AS $$
Python text goes here, can reference variable s
import hashlib
m = hashlib.sha256()
m.update(s) # here’s s!
return m.hexdigest() # return a text

$$ LANGUAGE plpythonu;

5.2 Aggregate functions

Here, the input is a set or vector of values. Typical univariate functions include: min, max, sum, avg, stddev,
variance. There are also bivariate functions: corr (correlation).

5.3 Window Functions

Recall that there is 1 value in output for each ”window” of input values. Any aggregate function can be used
in a window! Aggregates can be ordered (because windows can be ordered). Refer back to the windowing
notes earlier in the semester.

3

